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Abstract— In this paper, we propose a self-supervised method
to learn 3D motion and depth from monocular videos. Our
system contains a depth estimation module to predict depth and
a new decomposed object-wise 3D motion (DO3D) estimation
module to predict ego-motion and 3D object motion. Depth and
motion are further combined to synthesize a novel video frame
for self-supervised training. Our core component – DO3D – is
a new motion disentanglement module that learns to predict
camera ego-motion and instance-aware 3D object motion sep-
arately. More importantly, DO3D bypasses the difficulties in
modeling the complicated non-rigid 3D object motion through
learning an object-wise 6-DoF global transformation and a
pixel-wise local 3D motion deformation field. Qualitative and
quantitative experimental results on KITTI and DrivingStereo
demonstrate the effectiveness and generalization ability of our
model in depth estimation, optical flow estimation, and 3D
motion estimation, especially in dynamic regions.

I. INTRODUCTION

Estimating object-wise 3D motion and depth from monoc-
ular videos is a crucial and yet challenging problem in
outdoor scene understanding with many applications in
autonomous driving vehicles and robots. Recently, super-
vised data-driven approaches with deep learning have shown
promising results [1], [2], [3] for 3D motion and depth
estimation. However, it’s very difficult to collect ground truth
motion and depth data in a large quantity, and models trained
on limited training data also suffer from generalization
issues [4] in diversified application scenarios. To this end,
we study self-supervised object-wise 3D motion and depth
learning from a large amount of unlabeled monocular videos.

Although monocular videos – the projection of 3D scene
with dynamic objects to the 2D camera planes – can provide
important information about the 3D object motion and scene
geometry, learning 3D object-wise motion and depth from
monocular videos in a self-supervised manner is an ill-posed
problem with several inherent challenges: 1) important scene
structure information (e.g.. scale information) is missing due
to 3D-to-2D projection; 2) 3D scene geometry (e.g. depth),
camera ego-motion, and object-wise motion are entangled
together in monocular videos, making it hard to infer 3D
motion and depth directly; 3) 3D non-rigid motion patterns,
e.g. pedestrian motion, are diversified and complicated, hence
it is difficult to learn in a self-supervised manner.

Recent approaches [5], [6], [7], [8], [9] attempting to
address the above challenges in self-supervised learning can
be coarsely categorized into the following streams. One
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Fig. 1. 3D motion visualization of GeoNet [11], Li’s [9], and ours. Our
decomposed motion model predicts a consistent 3D motion filed than others
by optical flow or direct methods. R,G,B color maps correspond to motion
in x,y, z direction respectively.

line of research [10], [5] assumes that the scene is static
and ignores dynamic objects. Pixel filtering approaches such
as auto-masking [5] are proposed to mitigate the effects
of dynamic objects. Albeit advancing depth estimation, the
above methods can not predict 3D object motion.

Another stream tries to learn a residual 2D optical flow
map [11] to model object motion. However, 2D optical flow
cannot fully utilize the 3D constraints, e.g. the 3D motion of
cars are mostly rigid, and also may not necessarily deliver
high-quality 3D motion.

Most recently, several approaches [7], [9] have been pro-
posed to jointly learn 3D motion and depth. Li et al. [9]
propose to predict an extra 3D motion map for the entire
image. Unfortunately, despite smoothness constraints, the
approach cannot incorporate object-wise constraints, and the
complicated 3D object non-rigid motion makes this approach
struggle to achieve high-quality 3D motion estimation shown
in Fig. 1. Dai et al. [7] leverage stereo frames, aligned
foreground moving objects, and pre-computed ego-motion
to learn object-wise rigid motion. However, the effectiveness
of the approach strongly relies on object tracking and stereo
image pairs, which is inflexible and complicated. Moreover,
the approach only considers rigid object-wise motion and
fails to produce high-fidelity 3D motion for non-rigid objects
such as pedestrians.

In this paper, we propose a self-supervised joint 3D motion
and depth estimation system with 3D object-wise motion
disentanglement, namely DO3D, to resolve these challenges.
Our system contains two major components which separately
predict scene depth and 3D motion. Given depth and esti-



mated 3D motion, the 3D scene is projected to a new camera
view to synthesize a video frame for self-supervised training.

The core component of our approach is a new 3D motion
disentanglement module. The module first predicts camera
ego-motion which is shared by all pixels in the scene. Fur-
ther, to model the complicated 3D (non)-rigid object motion,
we formulate the 3D object-wise motion as the composition
of a global object-wise 6-DoF rigid transformation and a
3D pixel-wise motion deformation. The pixel-wise defor-
mation refines the results and produces high-quality motion
for non-rigid objects such as cyclists and pedestrians. Our
formulation is inspired by the observation that the motion of
many objects in outdoor scenes is globally rigid, e.g. cars,
with small local adjustments, e.g. pedestrian movements as
shown in Fig. 5. We use [12] to produce object instances, the
mask map is shown in Fig. 1. Thanks to our formulation, the
proposed approach can produce high-quality 3D object-wise
motion and depth shown in Fig. 1.

To evaluate the effectiveness of our approach, especially in
dynamic scenes, we conduct experiments on two outdoor au-
tonomous driving datasets – KITTI and DrivingStereo [13].
Compared with KITTI, DrivingStereo contains more dy-
namic scenes. Our method outperforms prior approaches in
optical flow estimation and is on par with them on depth
estimation, in both KITTI split and the new DrivingStereo
subset. Moreover, we achieve much better 3D motion esti-
mation results.

Our major contributions are summarized as below:
1) We propose a unified self-supervised framework to learn

object-wise 3D motion and dense scene depth from
monocular videos.

2) We present a new 3D motion estimation method with
disentanglement to predict camera ego-motion, object-
wise rigid motion and non-rigid deformation, exploiting
real-world motion constraints.

3) Quantitative and qualitative results on two driving
datasets show the superiority of our approach, especially
in highly dynamic scenarios. We also put forward a new
metric 3D endpoint error (3D EPE) for 3D motion/scene
flow evaluation.

II. RELATED WORK

a) Classical Geometry: Pioneer works of well-
established multi-view geometry [14] date back to the con-
cept of structure from motion (SfM) and stereo match-
ing based on visual correspondence. Specifically, structured
light [15], ToF [16], LiDAR [17], and stereo [15], [16]
cameras are practically deployed to obtain relative scene ge-
ometry characteristics such as disparity and depth. Classical
SfM relies on the assumption of the static scene and rigid
motion. Thus, it perform poorly on highly dynamic or non-
rigid scenarios. Besides, the high cost of LiDAR devices,
the sparsity of depth, and the cumbersome calibration of
the stereo cameras make them hard to be widely adopted.
Recently, Luo et al. [18] utilize learning-based prior and
leverage conventional SfM to obtain consistent video depth
estimation. In contrast to classical geometry methods, our

approach is trained in an end-to-end self-supervised manner,
able to capture the 3D motion of dynamic objects.

b) Self-supervised Monocular Depth: The framework
of self-supervised depth estimation is firstly proposed by
Garg et al. [19] from stereoscopic videos and further
extended into monocular fashion by Zhou et al. [10].
These learning-based approaches utilize large scale unlabeled
streaming frames to jointly estimate scene depth, camera ego-
motion based on novel view synthesis. However, one of the
vital drawbacks is that they are incapable of predicting the
accurate depth of moving objects robustly. Recent attempts
such as GeoNet [11], Monodepth2 [5] try to minimize the
gap by incorporating residual non-rigid optical flow and auto-
masking for moving objects separately. In the meantime,
other promising strategies excavate high-level semantic infor-
mation followed by PackNet-SG [20] and feature-metric con-
sistency followed by FeatDepth [21]. Our approach, based on
Monodepth2 [5], aims to acquire the moving objects’ depth
by modeling their 3D motion physically. Our approach can
serve as an extra module in current SOTA solutions for depth
estimation to further boost performance.

c) Dynamic Objects Motion: To effectively model the
3D motion of dynamic objects, Ranftl et al. [22] and Kumar
et al. [23] introduce piece-wise rigid approaches based on
super-pixel, each super-pixel shares same rigid motion pa-
rameters, which may suffer from conflict motion prediction at
the super-pixel boundaries. A few recent methods [6], [7], [8]
attempt to estimation motion in self-supervised learning by
disentangling the camera and object motion. GeoNet [11] fits
the residual object motion from the viewpoint of 2D by flow
consistency. It’s still difficult to infer the explicit 3D motion
pattern from the residual flow. Others propose to estimate
each rigid motion then synthesize foreground moving ob-
jects apart from background for photo-metric measurements.
Moreover, [6] only works on the stereo set, and [8] still
exploits constraints from left-right view and offline alignment
of objects’ masks across frames. Dai et al. [7] pre-compute
the ego-motion using off-line visual odometry, and utilize
left-right photometric consistency. Also, [7] lose background
context after segmenting foreground objects only. Most re-
cently, Li et al. [9] alleviate this problem by predicting an
implicit object motion map. In contrast to all the above
approaches, our method is purely based on monocular frames
and doesn’t require the alignment of objects’ masks. Besides,
none of them consider modeling the deformation of non-rigid
objects, while our decomposed non-rigid module is designed
to predict pixel-wise deformations as a motion compensation.

III. METHODS

In this section, we will first introduce preliminaries about
scene geometry. Then, we will present an overview of our
framework. Next, we will introduce different components
and elaborate on details about object-wise motion model-
ing with rigid and non-rigid motion composition. Our loss
functions for self-supervised learning are summarized in the
final section.
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Fig. 2. Framework overview. Our system requires two consecutive video frames for camera ego-motion prediction (a). The reconstructed image Iegot

and original It are incorporated into dynamic rigid motion (b) to learn object-wise rigid motion Mrig
t→s. Further, the residual non-rigid deformation (c)

exploits Irigt and It to recover non-rigid deformation Mdef
t→s. Each piece-wise training learning objective L is attached around the synthesized image.

A. Preliminaries about Scene Geometry

As a video is essentially the projection of a 3D scene onto
different image planes, two video frames are linked together
by the 3D scene geometry, camera ego-motion, and dynamic
object motion. We aim to utilize the geometric relationships
to recover the underlying 3D scene geometry and motion
from monocular videos. The scene geometry model will be
briefly introduced below.

Here, we represent two video frames as the source video
frame Is, s ∈ {t − 1, t + 1} and the target video frame It.
Let pt denote the 2D homogeneous pixel grid coordinates of
pixels in It, K represent the camera intrinsic matrix, and Dt

denote the depth map. Then, the corresponding 3D location
of the pixel pt in the target camera coordinate system is

Pt = Dt(pt)K
−1pt. (1)

Further, given the 3D point Pt, its location Pt→s at the
source frame timestamp (w.r.t the source camera coordinate
system) is determined by two factors: the relative camera
motion (i.e., rotation and translation) from the target to the
source Tt→s and the dynamic 3D object motion Mt→s (w.r.t
the target camera coordinate system). Mt→s is zero for static
objects or backgrounds. The point location Pt→s can be
obtained by combining the effects of camera motion Tt→s

and object motion Mt→s as
Pt→s = Tt→s(Pt +Mt→s). (2)

Finally, the 3D point Pt→s will be projected to pt→s at
the source image plane via

pt→s ∼ KPt→s, (3)
where pt→s is the corresponding 2D homogeneous coordi-
nate location of target pixel pt at the source image. Pixels in
It and Is are connected via pt→s. Given the correspondence
between pixels at It and Is from pt→s, pixel It(pt) can be
reconstructed by Is(pt→s) at the source image. As pt→s is
continuous, we use bi-linear sampling method to interpolate
the pixel values of its four nearest-neighbors following [10],
[24] to obtain Is(pt→s). This is the base for constructing the
self-supervised loss.

Given the original pixel coordinates pt and the transformed
one pt→s, the optical flow is calculated by

ft→s ∼ pt→s − pt. (4)

B. Our Approach

In this section, we will elaborate on how we use the
scene geometry model to design a neural system for jointly
estimating depth Dt, 3D motion (i.e., camera ego-motion
Tt→s and 3D motion Mt→s) and how the system is trained
in a self-supervised manner.

1) Our Network: An overview of the system is shown in
Fig. 2. The inputs to the system are two consecutive video
frames It and Is. The system contains two major modules
for depth estimation (Fig. 2: Depth Estimation) and motion
estimation (Fig. 2: (a)-(c)). .

The depth estimation module is a fully convolutional
neural network – DepthNet – which processes each frame
separately and produces depth maps Dt for each input frame.
Our DepthNet adopts U-Net structure with skip-connections
based on a ResNet18 backbone following [5].

The motion estimation module contains a pose estimation
network – PoseNet – to estimate camera ego-motion Tt→s,
and an object motion prediction network – MotionNet – to
produce object-wise motion Mt→s. The PoseNet (see Fig. 2
(a)) is a convolutional neural network with fully connected
layers to output the 6-DoF parameters including Pitch, Roll,
Yaw and translations along three coordinates. Then, the 6-
DoF parameters are converted to a transformation matrix
representing the relative camera motion Tt→s.

To relieve the difficulties of estimating complicated motion
patterns for various objects, MotionNet is designed to have
two components: an object-wise rigid motion predictor (see
Fig. 2 (b)) and a pixel-wise motion deformation estimator
(see Fig. 2 (c)). The object-wise motion predictor outputs
6-DoF global rigid transformation Mrig

t→s(i) for each ob-
ject instances i (see Fig. 2 (b)) to effectively model rigid
motion and produce a reasonably good global initialization
for modeling non-rigid motion. For notation simplicity and
consistency, we assign the estimated object-wise rigid motion



to the corresponding pixels and thus obtain a rigid motion
map denoted as Mrig

t→s. Further, the pixel-wise motion defor-
mation estimator is designed to learn a pixel-wise motion
deformation map Mdef

t→s (see Fig. 2 (c)) by refining the
rigid object-wise motion. The object motion is obtained by
combining the rigid motion and deformation as

Mt→s =Mrig
t→s(Pt +Mdef

t→s)− Pt. (5)
The object information is obtained by applying a pre-trained
Mask R-CNN [12] model to produce the instance-wise
object masks. We will show the design of MotionNet in the
following section.

2) MotionNet: Given the estimated camera-ego motion
Tt→s from PoseNet, we first obtain Iegot (see Fig. 2) by
sampling the source image Is according to pt→s. The process
is detailed in Sec. III-A while pt→s is computed with only
Tt→s (i.e. Mt→s is zero). This process transfers the source
image Is into the camera coordinate system Iegot to eliminate
the motion caused by the camera movement, facilitating the
follow-up dynamic object motion estimation.

Further, as shown in Fig. 2, our MotionNet takes It and
Iegot as inputs, and then predicts a dynamic object motion
map Mt→s (w.r.t the target coordinate system) through
predicting and combining the object-wise rigid motion Mrig

t→s

(see Fig. 2) and pixel-wise motion deformation Mdef
t→s (see

Fig. 2) as Eq. (5), which will be detailed as below.
a) Dynamic Rigid Motion: The dynamic rigid motion

component takes Iegot and It as inputs, and the goal is to
estimate an object-wise 6-DoF rigid transformation matrix
Mrig

t→s(i) for each moving object i. The object information
is from an off-the-shelf instance segmentation network –
Mask R-CNN [12]. The dynamic rigid motion network
employs several convolutional layers to extract the feature
representation separately given Iegot and It (see Fig. 2:
Feature Extractor and Fig. 3). We use RoI Align [12]
to extract object-wise features from each encoded feature
map. The original object bounding box is from Mask R-
CNN [12] which is enlarged by 20 pixels to incorporate more
background context information. In this stage, we remove
objects that has already been well reconstructed in Irigt with
camera ego-motion, indicating static objects. The extracted
RoI features from It and Iegot are concatenated (see Fig. 3)
and fed into a network with several convolutional layers
followed by a fully connected layer to regress 6-DoF rigid
motion Mrig

t→s(i) for each object instance i .
b) Non-rigid Deformation: Given the estimated object-

wise 6-DoF rigid transformation Mrig
t→s(i), the Irigt is ob-

tained by sampling from Is through transforming each in-
stance. This process is achieved by computing pt→s consid-
ering Dt, Tt→s, and Mt→s with Mdef

t→s being zero following
Eq. (1) – (3). The formation of Irigt considers camera-
ego motion and object-wise rigid motion, eliminating their
effects and facilitating the estimation of pixel-wise non-
rigid deformation. In this stage, we remove objects that
have already been well reconstructed in Irigt with camera
ego-motion and object-wise rigid motion, indicating static
objects or rigid objects. The feature extractor in dynamic

RoI Alignbox from Mask R-CNN
Feature 
Extractor

𝐼!
"#$ or (𝐼!
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Fig. 3. RoI Align to learn object motion from context.

rigid motion estimation is reused to encode features of It and
Irigt which are concatenated together and fed into the pixel-
wise motion deformation estimator. This estimator contains
several convolution and up-sample layers, and outputs a
pixel-wise deformation maps with three channels represent-
ing motion in x, y, z− directions.

3) Self-supervised Learning: In the following, we show
how we can train the network in a self-supervised manner.

Based on the estimated depth map Dt, camera ego-motion
Tt→s, and the object motion Mt→s, we can calculate the
pixel correspondence pt→s between target frame and source
frame using Eq. (1) – (3). Based on this correspondence, the
target frame is reconstructed by sampling the corresponding
pixels from the source frame Is. As before, the reconstructed
target frame Ît can be obtained by utilizing bi-linear inter-
polation following [10], [24]. Ît can be Iegot , Irigt and Ideft

which are reconstructed frames with Tt→s, {Tt→s,M
rig
t→s},

and {Tt→s,M
rig
t→s,M

def
t→s} respectively. Our self-supervised

objective is built by comparing the reconstructed frame Ît
with the observed frame It as shown in Fig. 2.

We use the photo-metric reconstruction error loss as
Eq. (6) to measure the discrepancy between Ît and It. It
encourages the network to learn to estimate Dt, Tt→s and
Mt→s (Mrig

t→s(i) for all instances i and Mdef
t→s) that can

produce It given Is.

Lph =
α

2
(1− SSIM(Ît, It)) + (1− α)‖Ît − It‖1, (6)

where α is a hyper-parameter balancing the SSIM [25] term
and l1 pixel-wise difference.

Further, we also incorporate a smoothness loss Lds on the
produced depth map to encourage local smoothness:

Lds = |∂xD∗t |e−|∂xIt| + |∂yD∗t |e−|∂yIt|, (7)

where D∗t = Dt/Dt is the mean-normalized inverse depth
map following [5].

MotionNet focuses on object-wise motion estimation,
hence we define a foreground loss as:

Lfg = mt · (Lph + β · Lds), (8)

where mt is the foreground mask in the target frame. β is
set to 0.001 in our paper, similar to [5].

We also introduce a mask loss to regularize the reconstruc-
tion in the semantic space. The mask loss Lm is defined as:

Lm = 1− IoU(m̂,mt), (9)

where m̂t represents the reconstructed semantic mask ac-
croding to the estimated geometric model, and IoU(·, ·)



computes Intersection over Union (IoU) between m̂t and the
mask mt of frame t. Finally, Lph, Lds, Lfg and Lm are
combined to be the overall loss:

L = ωph · Lph + ωds · Lds + ωfg · Lfg + ωm · Lm, (10)

where hyper-parameters are ω∗ = [ωph, ωds, ωfg, ωm] in-
cluding the loss weight of the photo-metric loss, foreground
loss and mask loss respectively.

The whole framework is trained in a piece-wise manner: 1)
Train the DepthNet and PoseNet using Iegot and It, where
ω∗ = [1, 0.001, 0, 0]; 2) Fix DepthNet and PoseNet from
stage 1), and train the object-wise rigid motion estimator
together with feature extractor using Irigt and It where
ω∗ = [0, 0, 1, 1]; 3) Fix DepthNet, PoseNet, feature extractor,
and object-wise rigid motion estimator, and train pixel-wise
motion deformation estimator using Irigt and It where ω∗ =
[0, 0, 1, 1]. In training the MotionNet, we aim to estimate
motion for dynamic objects at this stage and we hence
only considers object regions. As all the components are
differentiable, the network can be optimized by minimizing
the self-supervised loss.

IV. EXPERIMENTS

A. Implementation Details

The entire network is trained on a single RTX 2080 Ti
GPU with Adam [26] optimizer (β1 = 0.9, β2 = 0.999),
and all RGB inputs are resized to 640×192. We follow
Monodepth2 [5] to construct DepthNet and PoseNet which
are trained with batch size 12 and learning rate 10−4. In
training the MotionNet, the learning rate is 10−5 with batch-
size 12.

B. Datasets

We conduct experiments on the KITTI 2015 dataset [17]
and DrivingStereo dataset [13]. The KITTI 2015 dataset
consists of image sequences for 200 driving scenes at 10
frames per second. The image resolution is around 375 ×
1242. Nevertheless, motion patterns and dynamic objects are
still limited in the KITTI dataset. Thus, we introduce the
DrivingStereo dataset that covers highly dense and dynamic
scenarios. The frame resolution in the DrivingStereo dataset
is around 400× 881.

1) KITTI Eigen Depth Split: The network training and
the depth estimation (DepthNet) evaluation is conducted on
the Eigen depth split [27] on KITTI 2015. We follow [5]
and remove the invalid static frames are removed in pre-
processing step. Finally, the training, validation and test set
contains 39, 810, 4, 424, and 673 images respectively. As
the Eigen split does not provide optical flow ground truth
for motion evaluation, we apply the state-of-the-art optical
flow estimation approach RAFT [1] to produce the pseudo
ground truth optical flow for evaluating motion.

2) KITTI Optical Flow Split: To better evaluate the mo-
tion with optical flow ground truth, we also adopt the KITTI
2015 flow split and employ its training split (200 images) to
validate our model in optical flow and 3D motion estimation.

3) DrivingStereo Train/Test Split: As existing methods
are not evaluated on the DrivingStereo dataset, we randomly
split the dataset into two subsets – train split and test split.
The train and test split consists of 39, 805 and 150 images
respectively. Due to the lack of optical flow ground truth,
we also introduce RAFT [1] to predict dense pseudo ground
truth for motion evaluation.

C. Evaluation metrics

1) Depth: We follow the depth evaluation metrics in [28]:
absolute relative error (Abs Rel), square relative error (Sq
Rel), root mean square error (RMSE) and root mean square
logarithmic error (RMSE log). To eliminate the influence
of scale which is missing in monocular scenario, Godard et
al. [28] scale the predicted depth frame by the median of
the ground truth in evaluation. Besides, δ < σ represents the
percentage of depth predictions whose ratio with respect to
the ground truth and inverse ratio with respect to the ground
truth are lower than σ. In addition, the predicted monocular
depth is capped to 80m during evaluation following [5].

2) Optical Flow: For the optical flow estimation task, we
use the average endpoint error (EPE) metric [29]. To better
assess the motion estimation of objects (our MotionNet), we
divide an image into background (bg) and foreground (fg)
regions, and evaluate our model in bg and fg regions sepa-
rately. Foreground and background are splitted by instance
masks from Mask R-CNN [12].

3) 3D Motion/Scene Flow: To better evaluate the perfor-
mance of 3D motion estimation, we propose a new scene
flow metric: 3D EPE, which directly measures the distance
of each point’s 3D movements in two consecutive frames.
This is more suitable in comparison with the provided –
bad pixel percentage (BPP) – for 3D scene flow evaluation,
which calculates the percentage of pixels with both good
depth estimation and optical flow. In contrast, the 3D EPE
directly measures the quality of estimated 3D motion.

We generate 3D motion ground truth using the optical flow
and depth ground truth provided by the KITTI dataset. Pixel-
wise correspondence is obtained via optical flow, and the 3D
point location can be derived with the provided depth ground
truth. The camera-ego motion can be robustly estimated via
[4]. The source pixel coordinates are converted into the target
coordinate system based on the global camera ego-motion
and the depth ground truth. Then, we can obtain the 3D EPE
pseudo ground truth through subtracting the point locations
at the source time-step from the corresponding point location
at the target time-step.

D. Main results

In the following, results are compared in terms of motion
and monocular depth estimation. To evaluate motion, we
adopt the optical flow estimation task (see Sec. IV-D.1),
measuring the 2D projection of the estimated 3D motion,
and the 3D motion estimation, assessing the 3D EPE of the
estimated 3D motion ((see Sec. IV-D.1). The depth evalua-
tion performance is presented in Sec. IV-D.2. We perform
model adaptivity and generalization analysis in Sec. IV-D.2
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1) Optical Flow Evaluation: We conduct both quantita-
tive and qualitative comparisons on the KITTI and Driving-
Stereo datasets to validate the performance on 3D motion
estimation. We don’t directly compare with methods based
on pixel matching [30], [31] in that the optical flow based on
matching can not reflect the 3D motion modeling capability
which is our focus. Therefore, we compare with repre-
sentative works in geometry based optical flow estimation
approach – GeoNet [11] and Monodepth2 [5]. The results on
the KITTI dataset and the DrivingStereo dataset are shown
in Tab. I, Tab. II and Tab. V.

“fg” and “bg” represent the evaluation on foreground
and background regions, “Noc” stands for non-occluded
regions, and “Occ” indicates occluded regions. GeoNet [11]
rectifies rigid flow with a ResFlowNet. Thus, we compare
two versions of GeoNet, which are GeoNet with or without
ResFlowNet, labelled by GeoNetres and GeoNetrig respec-
tively. We use “Monodepth2” as our baseline. DO3Drig

represents our model with object rigid motion revised and
DO3Ddef is our full model.

a) Evaluation on KITTI Dataset: On the optical flow
split: 1) benefited from our MotionNet which estimates 3D
object motion, our overall model DO3Ddef significantly
outperforms all other methods in foreground object regions;
2) our model also achieves the best overall performance in
both occluded and non-occluded regions, demonstrating the
effectiveness of our approach; 3) compared with our baseline
– Monodepth2, our full model reduces the EPE in foreground
regions almost by 50%, e.g. 14.86 vs 30.33 in Noc regions
and 15.87 vs 31.05 in Occ regions; and different components
of our model consistently reduce the error for foreground
objects, e.g. the original “fg” EPE in non-occluded regions is
reduced from 30.33 to 16.33 with the rigid-motion estimation
component, which is further reduced to 14.86 with pixel-wise
motion deformation component, and the trend is consistent
for occluded regions.

Quantitative results on the Eigen-split are shown in Tab. II.

Methods Noc ↓ Occ ↓
bg fg all bg fg all

GeoNetres [11] 3.77 19.07 8.17 6.76 20.23 10.86
GeoNetrig [11] 5.98 28.06 11.47 8.24 29.00 13.40
Monodepth2 [5] 4.11 30.33 10.95 5.48 31.05 11.85
DO3Drig 4.10 16.33 7.29 5.44 17.18 8.53
DO3Ddef 4.15 14.86 6.86 5.49 15.87 8.18

TABLE I
OPTICAL FLOW ABLATION STUDY OF KITTI 2015 OPTICAL FLOW

TRAINING SPLIT.

Our method again achieves the best overall performance
which demonstrates especially superior performance in the
foreground regions.

Qualitative results are shown in Fig. 4. We can see that
optical flow of the car in red dash box is fully revised with
our MotionNet. The error map in the middle column also
shows that our predicted optical flow from 3D motion is
much more accurate than the baseline. Finally, we visualize
the learning 3D motion in Fig. 5 (Mt→s) which demonstrates
the movement of the cyclist and the car. The 3D motion map
is visualized as a color image where R,G,B corresponds to
motion along x, y and z directions respectively. Our interme-
diate reconstructed images are also shown in Fig. 5. With the
pixel-wise motion deformation estimator, the reconstructed
quality for cyclist has been improved.

b) Evaluation on DrivingStereo Dataset: To further
manifest that approach performs well in complex and dy-
namic scenes, we use DrivingStereo dataset to train both our
proposed models and the baseline Monodepth2 from scratch
for fair comparisons. We believe that it’s necessary to test
effectiveness of models in a dynamic dataset with diversified
motion patterns. According to the experimental results in
Tab. V, our method performs significantly better than the
baseline (e.g. “fg” EPE is reduced to 24.03 and overall EPE
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Fig. 5. Qualitative comparisons between DO3Drig and DO3Ddef .

Methods KITTI Depth DrivingStereo
bg ↓ fg ↓ bg ↓ fg ↓

GeoNetres [11] 4.19 8.73 19.58 36.38
GeoNetrig [11] 6.82 12.55 24.78 43.42
Monodepth2 [5] 4.38 9.32 20.39 49.90
DO3Drig 4.37 8.26 20.28 38.63
DO3Ddef 4.40 8.41 20.34 34.81

TABLE II
OPTICAL FLOW ABLATION STUDY OF KITTI DEPTH SPLIT (673

IMAGES) AND DRIVINGSTEREO IN EPE METRIC. FOR THE

DRIVINGSTEREO RESULT, MODELS ARE ALL TRAINED ON KITTI AND

DIRECTLY EVALUATED ON THE DRIVINGSTEREO DATASET.

is reduced to 23.60). The encouraging results demonstrate
that our model is able to learn 3D complicated motion in
fast-moving and complicated driving scenarios. This further
verifies the effectiveness of our proposed MotionNet.

2) Monocular Depth Evaluation: We evaluate the depth
estimation performance of DepthNet on the KITTI dataset
and the DrivingStereo dataset. The whole model is finetuned
end-to-end. Results are shown in Tab. IV (KITTI) and Tab. V.
Although the focus of our approach is to model 3D motion,
the full model still improves the performance of the baseline
Monodepth2 [5] benefited from a better model representing
the underlying geometric rules. Qualitative results shown
in Fig. 7 also demonstrate the superiority of our proposed
method, especially at the object boundaries. Depth estimation
can also benefit from well-learned 3D movements.

3) 3D Motion Evaluation: Quantitative results of 3D EPE
are shown in Tab. III. In comparison with the baseline
Monodepth2, our proposed model significantly reduces the
3D EPE error (DO3Ddef ) by around 25%. Fig. 1 shows the
qualitative results of the predicted 3D motion (Mt→s): the
car is moving along the z-axis with small motion along the

Target Source

GeoNet [11] GT Flow [3]

Monodepth2 [5] Ours

Fig. 6. Qualitative results of the DrivingStereo split to test the gener-
alization ability in highly dynamic cases without finetuning. Our motion
decomposition module revises the foreground optical flow of moving objects
explicitly. Best viewed in color.

Methods Monodepth2 [5] DO3Drig DO3Ddef

3D EPE ↓ 3.062 2.296 2.290

TABLE III
3D MOTION ABLATION STUDY OF KITTI 2015 OPTICAL FLOW

TRAINING SPLIT IN 3D EPE METRIC.

x-axis. All results demonstrate that our full model DO3Ddef

performs well in estimating 3D motion.
4) More Analysis on Generalization:

a) Train on KITTI and Evaluate on DrivingStereo: We
use the model trained on KITTI to evaluate the DrivingStereo
sequences. The optical flow results are shown in Tab. II
(DrivingStereo) and the depth estimation results are shown in
Tab. IV (DrivingStereo). Our approach also achieves SOTA
performance in this high dynamic cross-dataset evaluation
setting. Qualitative results are shown in Fig. 6. GeoNet and
Monodepth2 both fail in learning object motion (e.g. cars)
in this new dataset. However, our model still succeeds in
estimating accurate motion and is able to preserve the sharp
details at the object boundaries. Our model outperforms the
baseline in the depth estimation. The above demonstrates that
our model also exhibits good generalization abilities.

V. CONCLUSION

We have presented a self-supervised framework to estimate
the dynamic motion of moving objects and monocular dense
scene depth jointly. The core component is MotionNet which
combines object-wise rigid motion and pixel-wise motion
deformation to represent the complicated 3D object mo-
tion. Our extensive experiments on optical flow and depth
estimation demonstrate the superiority of our model. For
the future direction, we would like to combine temporal
information to derive a consistent geometry model for 3D
scene reconstruction.



Datasets Methods Size Arch. Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

KITTI Eigen Depth Split

GeoNet∗ [11] 418× 126 ResNet50 0.149 1.060 5.567 0.226 0.796 0.935 0.975
Li et al. [9] 416× 128 ResNet50 0.130 0.950 5.138 0.209 0.843 0.948 0.978
Lee et al. [8] 832× 256 ResNet50 0.124 1.009 5.176 0.208 0.839 0.942 0.980
Monodepth2 [5] 640× 192 ResNet18 0.115 0.903 4.863 0.193 0.877 0.959 0.981
DO3Ddef† 640× 192 ResNet18 0.114 0.890 4.841 0.193 0.877 0.959 0.981

DrivingStereo Split
Monodepth2∗ [5] 640× 192 ResNet18 0.157 1.976 7.814 0.217 0.801 0.942 0.979
DO3Ddef† 640× 192 ResNet18 0.156 1.935 7.733 0.214 0.804 0.944 0.980

TABLE IV
QUANTITATIVE RESULTS OF MONOCULAR DEPTH ESTIMATION ON KITTI 2015 [17] EIGEN SPLIT AND DRIVINGSTEREO [13] SPLIT.

RGB Monodepth2 Ours

Fig. 7. Depth visualization of Monodepth2 and our method. Best viewed in color.

Methods Optical Flow Estimation
bg ↓ fg ↓ all ↓

Monodepth2 24.40 66.63 30.02
DO3Drig 22.50 24.68 23.48
DO3Ddef 22.65 24.03 23.60

TABLE V
ADDITIONAL COMPARISONS ON DRIVINGSTEREO OPTICAL FLOW

EVALUATION. ALL THE MODELS ARE RE-TRAINED FROM SCRATCH.
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